S Report No. F=66~1
.

AN INVESTIGATION OF APPROXIMATE SOLUTIONS
TO FLUID DYNAMICS AND HEAT TRANSFER PROBLEMS
BY VARIATIONAL METHODS

Wheeler K. Mueller

Stanley T. Liu

Department of Mechanical Engineering

R Prepared for the

Office of Grants and Research Contracts

Nationa! Aeronautics and Space Administration

under grant

NGR-33-016~067

December 1 _966‘

' . BT
: ' N 2w Yerk University T : E
school of Engineering and Science
University Heights, New York, N.Y. 10453

FACILITY FORM 02

§

o T



Report: F-66-1

‘f

» NEW YORK UNIVERSITY
New York, N. Y.

AN INVESTIGATION OF APPROXIMATE SOLUTIONS
TO FLUID DYNAMICS AND HEAT TRANSFER FROBLEMS BY VARIATIONAL METHODS

by

Wheeler K. Mueller
a Professor
Department of Mechanical Engineering

and

Stanley T. Liu
Research Assistant
Department of Mechanical Engineering

Prepared for the Office of Grants and Research Contracts
Office of Space Sciences and Space Administration
National Aeronautics and Space Administration
under Research Grant NGR-33-016-067

December 1966



Y

1.
ABSTRACT

Approximate solutions for fluid dynemics and thermal problems by
variational method were investigated. The application of the variational
technique, based on a least square procedure originally suggested by
Citron, was illustrated by several specific examples. Solutions were
obtained for a melting-freezing problem, a natural convection problem,
and two transient heat condition problems. Comparison with existing exact

solutions were made to demonstrate the degree of accuracy of the method

used,
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Nomenclature

Specific heat

Squared error functional defined by Eq. (1.4)
Gravitational acceleration

Grashof Number

Generalized function, defined by Eq. (l.13)
Convection heat transfer coefficient

Thermal conductivity

Reference length or latent heat of fusion
Nusselt NMumber

Pressure

Generalized coordinates

Prandtl Number

Generalized function, defined by Eq. (1.2)
Generalized coordinates

Rayleigh Number

Temperature

Time variable

Dimensionless velocity component in the x direction
Velocity component in the x direction
Dimensionless velocity component in the y direction
Velocity component in the y direction
Dimensionless space variable

space variables

Thermal diffusivity

Coefficient of thermal expansion

2e



Depth of freezing front at time t

Thermal penetration thickness

Dimensionless temperature variable

Dynamic viscosity

Kinematic viscosity

Dimensionless space varieble in the x direction
Mass density

Time variable, or dimensionless time variable

" Stream function

Dimensionless stream function
Hydrodynamic penetration thickness defined in Section U

Thermel penetration thickness defined in Section L



I. INTRODUCTION

The desirability of good approximate solution techniques for
mathematicaelly difficult problems need not be argued. Until relatively
recently, approximate solutions for fluid dynamics and thermal problems
were almost exclusively obtained by integral techniques. In recent
years approximate solutions of the Galerkin type and the Biot type,
founded on the calculus of variations, have begun to be used,

Most of the applications of Biot-type variational solutions have
been to a limited class of conduction problems. The purpose of this
report is to demonstrate the utility of Biot-type variational techniques
for a wider variety of problems. Specific examples included in this
report include a melting-freezing solution, a natural convection problem
and two special conduction problems.

When Biggsgggéinally'proposed his varistional technique, it was
based on the ideas of minimum entropy production., Since then, it has
been demonstrated in a3 number of ways that the same final results can
be obtained on purely mathematical grounds. These later expositions
have the advantage of removing the thermodynamic limitation implicit in
Biot®s original work, and allow the procedure to be viewed as one that
works for any physical phenomena governed by & particular type of
partial differential equation. Of the various developments possible,

a development based on an idea originally suggested by Citrogu%s favored
in this report.

Some specific differential equation is almost required in a dis-
cussion of the variational technique . The transient heat conduction
example is chosen here, but as the examplies contained later in this
report demonstrate, the technique is not limited to this relatively

simple type of problem,
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Consider solutions to

e Z - L (x | (1.1)

for a region X1SX X, tu= 0 and subject to appropriate boundary
and initial conditions. A new function Q is defined, where for a

true solution

t
Q(x,t) = — g k g{- dt (1.2)

(o)

which ylields with the differential equation

" t
%ﬁ. - -S g;(kg;l—gdt = -j pc%%dt

(o] (o]
T(x,t)
?; = -K pcdT , (1.3)
T(x,0) ‘

The functional E is defined as

t  *2 ; i
E(t) = S g [5%+ K 5}:] dax dt (1.4)
o x5

For a true solution, E(t) = O as a consequence of Equation (1.2). In
constructing approximate solutions the procedure is to compute Q for

a specified T through Equation (1.3), (not Equation (1.2))and then to

minimize the error represented by the functional defined by Equation (1.k4).
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Assume then that
T(xst) = T(xsqis"') (1~5)
where qy represents n unspecified functions of time, i.e.,
q = qi(t), end T =t. It is assumed that T(x,qi,T) satisfies
all boundary conditions required of the function T , but it does

not necessarily satisfy boundary conditions imposed on space

derivatives of the function T. As a consequence of Equation (1.3)

B g (ka7 (1.6)

and therefore, after integration,

ax,t) = alx,qy,7) (1.7)
Thus,
o < ) d
gg = Z 5% y + 5% (1.8)
=1
and

X gz- = kT (x,q,7) (1.9)

Combining Equation (1.8) and Equation (1.9), it is found that

n

Box o ) BBl
j=1

vwhen considered as a function of (x,qi,&i,r), is linear in the ﬁi.
If we now consider the minimization of E(t) as a result of varia-

tions of 09dQ/d0t but not JOT/dx, or T, Equations (1.5) through (1.9)
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require that this is equivalent to a minimization with respect to the
functions éi while the q‘j are considered fixed. Application of

Euler's equation then yields the n equations

x2 |
g [?ﬁWk%ﬂg—?‘de:o ’ J’=192»°°nn
X d

1

which are 1st order ordinary differential equations for the qi(t).

In the sections which follow, this variational procedure is applied
to & number of different problems. The object of these sections is to
illustrate the variety of particular techniques require¢ and thus to
suggest approaches for other problems. An additional object is to
compare variational results with exact results so as to provide some

' insight to the accuracy of epproximate solutions.
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. ) II. A Melting-Freezing Problem

- Approximete variational solutions for melting-freezing problems
are relatively easy to obtain, and appear to be highly accurate. As an
example of the techniques involved, one specific problem is considered
in this section, and the variational results are compared to results
availeble from an exact solution(s).

The specific example considered is that of a semi-infinite solid

in contact with a semi-infinite liguid of the same density.

g L
e N \\éii\{::

1 .

e
- T, = SoLid Puask k) 11('"tl!:\.\cm\o Prnse - Ty

1
T

1
—x‘

2\

— 4 X
X=0
The geometry is as illustrated in the sketch above. The subscript 1
shall refer to the left-hand, or solid, phase while the subscript 2 shall
refer to the other. Assuming solidification is occurring, the interface
between the two phases moves to the right with velocity éo(t), where
%b(t) is the distance from x = 0 to the interface.

The governing differential equations, assuming constant properties,

are
L o 52T1
=35 = =3 -maxs S (2-1)
1 . Ox
H
oT 3%
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The initial conditons assumed for the problem are

Tl(x,O) = T, & constant X< 0
Te(x,o) = T,, & constant x>0

while the boundary conditions are

i

Tl(%ost) = '1‘2( 30,)1;) Tm’ a constant, t >0

and
. 6T2

3y + PLY = -k, 5=
1l ox x= $o o] 2 ox x=

!

o

where L represents the enthalpy difference between the saturated liquid

and solid state. It has been assumed that the density of the liquid end

solid state are identical.

(2-2)

(2-3)

(2-4)

In the solution of this problem it is assumed that the thermal effect

in both the solid and liquid can be represented adequately by a penetration

thickness. The two penetration thicknesses, %l(t) and 92(t), thus become

the unknown functions sought by the variational procedure. These penetra-

tion thicknesses, as illustrated in the earlier sketch, are measured from

the moving interface.

To formulate the variational problem, the following functions are

defined.
t 3T,
Q = -k, 37= 4t < XLG
(o]
t T,
QQ = -k,2 S dat go:s X< ®

(2-5)
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' 3q oT.. %
E1=S S £Yt1'+ kl-si ax dt

§ 2s,-5)

R 3, dT %
E2=SS [W-l-ke Slax at

o %o

The result of the variational procedure may be written as

%
° %y
3

'(.51' o)

S$o+82

%o

oQ, -9Q

oT

oT

7
T * KT dx=0

2 2 27
a?a[at—‘f kyx |dx = O

From equations (2-1) and (2-5)

Q) ‘)
n.

(o]

%y
2 =

(e -

- € cp(T5-T, )

-kl

ey

|

t

o]

oT
L st = -

ot

?cl (Tl-Ts)

The temperature profiles used for this problem are

s 2
ToT T (1 +8y)

(1-8,)°

10.

(2-6)

(2-7)

(2-8)

(2-9)



where

§l 5
(2-10)

% - 3

The temperature profiles chosen satisfy the boundary conditions of

equation (2-3) as well as

Tl(-(al-so), t) = T,

(2-12)

oT

oT
1 e 0 = <= (2-12)
PRI T

From equations (2-8) and (2-9) there results

1 3
Q = --3—A1%1 (1+§1) -1<8,%0

(2-13)

1 3
Q = §A2$2 (1—52) 0£Eg, <1

where
A = gcl(Tm-Ts)

AQ = ?Cg(Tm-TL)
and in which the conditions

Q]) = 0 = Qz) (2-14)
x,-.-(sl-so) x= 5+ 402
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have been introduced. The conditions of equation (2-14) result fram
the definition of Q, equation (2-5), and the idea that beyond the
penetration thickness, the heat flux is zero.

From equation (2-13) it follows that

se = 3A (+e)?[ %) (1) - 35 ]
(2-15)

% Ta, 1802 %, (14 22 ) 435 ]
The boundary condition of equation (2-4) may be written as

% S

1 ——— . -

B, L re- ), -
From equations (2-15) and (2-16) there results

e l - .

where

A = (Al-AE) + FL

Integrating equation (2-17) and noting that SO(O) = 51(0) = 32(0) = 0
yields

So - -—;K (A; 8, + Ay5,) (2-18)

With the two previous expressions it is possible to eliminate So and %o

from the expressions for Q and 0Q/dt and to compute
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) A
1 1 2 1
3% ° 5 A, (1+8)° (1-28] - &)
(2-19)
dQ A
2 1 2 2
35, = 5h (1F) 1+ X4 19
Also, from equation (2-9)
oT a
! 1
ok = 2y (g
(2-20)
oT a
2 2
ok T ey, ()

Thus, if the results from equations (2-15), (2-17), (2-18), (2-19) and
(2-20) are substituted into equations (2-7) and the indicated integrations

are performed, the following ordinary differential equations result.

(2-21)

where
2 2
c _;z,_@_il,,,(‘_‘; 5 _1_5,,§i‘a+(‘_“g)
1 - 7 T3A A > Y1 % 7T 73R A
¢, ~-o2(t. 2 Y (e
2 7 A \3 A ’ 2 7 A \3 A
o A o A
- A(aa-252 - 22 8o
o =21 - 15 ¢ s+ Dy = z=(21+ 154
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The solution to equation (2-21) which satisfies the physical
conditions of the problem and the initial condition 81(0) =0= 9 2(o)

may be written

P(t) = B 3,(¢t) (2-22)
2D /2
3,(t) = [F%Q—g] (4T ) ; (2-23)

where

1 2 7
B = é-él—D; \—_(051)2 - c2n5) + J(03D2 - C2D3) + k4 01C3D1D5_l

The solution obtained has been compared with the available exact

solution for the specific case of freezing water. The conditions chosen

_ o _ o. _ o _ _ Tom,..3
were T = 32F, T = OF, T, = LO°F, Po= P = 5T /£t
and I = 143 Btu/1bm.. The exact solution yields

§.(t) = 0.0186 Nt (2-24)

while the approximate solution yields

5 (t) = 0.0188 ¢ (2-25)

The temperature profiles for the approximate and exact solutions are
shown on the following graph. It is obvious that the agreement is out-

standingly good.
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III. Transient Conduction with non-uniform initial conditions

Previous solutions for transient conduction problems by variational
methods have been limited to problems involving uniform initial conditions.
In this section, variational soclutions for two problems with non-uniform
initiel conditions are obtained.

For one space variable transient conduction with constant properties,

the governing differential equation is

T 32
k- . ox

H

N

Introducing the following dimensionless variebles

T-T¢ T kt

T—_—T’ mo— . X =
2~ "1 ch2

P =

Hix

in which Tl and T2 are suitable reference temperatures and L is a suitable

reference length, equation (3.1) may be written as

30 %o
31 T .2
OA

In order to implement the variational procedure, & new variable (X, 1)

is defined by
90
Q(X,T) = mS = dr

It is apparent that Q(X,T) is proportional to the heat flux over the time 7.

In the usual way, the definition of

7 % 5
E(1) = [% + %%] &K dr
X,

(o}

(3.1)

(3.2)

(3.3)

(3.4)
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and the specification that the set of unknown functions involved in the
variational procedure are designated by qn(T), leads to the following

equation as the variational result for this problem.

X

%[%ﬁ‘* & ax-o (3.5)

X
1

The function Q is computed from an assumed temperature profile by
noting that from equations (3.2) and (3.3) it follows that

T T
d 3% 30
3%': :S 5;5 AT = - 5 dt
o o (3.6)

= 6(X,0) - o(x,7)
Therefore Q may be determined by integration of equation (3.6).

Problem I

The first problem considered is that of a slab, of thickness 2L, with
an initial linear temperature distribution, sub-
. T, jected to perfect insulation of both surfaces for
P/////// time greater than zero. In the adjacent figure the

/////A{:—G(X,O) reference temperatures and the location of the

coordinate axis are illustrated. The initisl condi-

tion may be written

.—.x

6(X,0) = % (1 + %) (3.7)

The perfect insulation boundary condition for T > O requires

Q(1,7) = Q(-1,7) = O (3.8)
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Equation (3.8) follows from the interpretation of @ given with equation (3.3).

Since the variation of © about the mid-plene value of'% is an odd

function of X, © is assumed to be of the form
0 = 3 + q )X+ qy(nK’ (3.9)
2 1 % .

Additional terms involving higher odd powers of X could be taken, but it
is expected that the solution obtained from equation (3.9) is adequate for
almost &all purposes. Fram the initial condition, equation (3.7), it follows

that

0,0 = 3 , g0 = © (3.20)
Utilizing equations (3.6) and (3.9)

B . [2-q@k- g (3.12)

Thus

@ = 3[3- 4]0P - § oty (3.12)

vhere the condition Q(1,7) = O has been used.
It is now possible to compute the following terms required for

equation (3.5)

> 4
Q. QX), . XD (3.13)
2
= O (5.28)
L
g%e_ = ;&x_ (3015)

2
%(9- = q * 39X (3.16)



following two ordinary differential equations for 9 end 9.

Performing the indicated integrations reduces these equations to

with

and

Introducing the previous expressions into equation (3.5) yields the

1
(l-xe)[g_._:_}_(f_ .
2 z
o

1l

L 2
( lﬂz')['le_x' 4 +

o]

L

1-X

L

ECALEE e

%:_x_ &, + ql+3q2X2]dX=O

14 él + 8 62 + 35 g, + 21 u = 0

2L dl + 1k éa + 63 q + 45 oy, = 0

The solution to these equations is given by

ql(T) = Ale

qe(r) = Ble

Ay

i
B, = 35 (v+21)

-X l‘r

-le

N J]55

+

+

A2e

32e

-X2T

-X2T

The initial conditions, equation (3.10), yields

A

1

+ A2

=

N

19.

(3.27)

(5.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Computed results are given in the following table along with values

from the exact solution.

The agreement is excellent.

Position
Time
T=Et__ %QX-O -’L5=x=1/2 ?E=x=l
2
¢l | gract™| variational | Exact | Veriational| Exect | Variationsl
0.0 .500 .500 .750 750 1.000 1.000
0.2 +500 500 676 675 .T49 .Th6
0.4 .500 .500 .608 .607 653 .650
0.8 .500 .500 .540 .54%0 .557 .556
1.6 .500 .500 .506 .506 .508 .508
® .500 .500 .500 .500 .500 .500
T-T
Values of © = -,_.l-,-_—T for Problem I.

2
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Problem IT

The second problem considered is that of a slab, of thickness L,
with an initial temperature distribution which is parabolic. For time
greater than zero, the slab is subjected to a time dependent temperature
on one surface vwhile the other surface temperature remains constant. The

adjacant figure illustrates the problem. The initial condition is

l e (X,0) = 4 X (1-x) (3.26)
'w=o
The boundary conditions are
| o(1,7) = © (3.27)
' 0(0,7) = 1 - e 1907 (3.28)
I The particular form chosen for 6(0,1) was
o) *_¥X t dictated by a desire to have a function which
L

allowed very rapid surface temperature changes yet was simple to work with.
The temperature, ©, is assumed to be of the form of a finite

power series. The number of terms in the series is taken as five, but

the procedure for fewer or more terms is similar. Thus

00K,7) = a (1) * a (DK + gy (X + gy (I + g (1)K (3.29)

Consideration of the boundary and initial conditions, equations (3.26)-(3.28)

yields
0(%,7) = q (1K) + g, (%%) + o, (%K) + g, (x"X) | (3.30)
with
qoh) - 1¢e°1007
a,(0) = -k
3;(0) = 0 = gq(0)
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Equation (3.30) contains three unknown functions, %s U3» and q,, which
must be determined from three differential equations.
Following the procedure indicated by equation (3.6), there results

2 2 3 2 k4
Q@ = g - (e G- e G- 1) (3.31)

2 P
+ q, (g—-’;—)+q5

where iQ = qs(T) z Q(0,7)

It is noted that the absence of a heat flux boundary condition introduces an
additional unknown function, qs(t). Since this unknown function, qs(r),
does not appear in the expression for o, qs(r) appears in the variational
results only through its first derivative, és(r). Additionally, the parti-
cular differential equation added through qs(r) is of a very simple form,
and allows for an easy elimination of qs(r) from the other differential
equations.

It is now possible to compute the following terms required for

equation (3.5).

§§2- - ’5‘3-’33 (3.33)
% = ’eﬁ’ﬁﬁ (5.34)
%&; ) ;5_"1 :_;_5_ (5.35)
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?;- = 1 (3.36)

$ = g ~5(2-2) -qy(1-3%°) -q,(1-46) (3.37)

Introducing the previous expressions into equation (3.5) and performing
the indicated integrations yields the following ordinary " diff'erential

equations.

3124, + hh7q3 + 518§, + 2520&5 + 1008q,, + 1512q, + 1800q) = 10924  + 2520q,

(3.38)
7ll»5q2 + 1070q3 + 12'+2<'1,+ + 5880q5 + 2520q, + 38’-}0(13 + l+620qh = 2580?10 + 5880q°
(3.39)
1&,21;5&2 + 20,&93&5 + 23,81&% + 1.10,880«’;5
+ 49,500q, + 76,230q; + 92,400q) = 49,0054  + 110,880q (3.10)
‘562 + 7?13 + 8311; + 60@5 = 20('10 + 6Oqo (3.41)
As suggested before, the function q5 appears only through its
derivative c'15. Thus equation (3.41) may be used to eliminate 65 from
equations (3.38)=-(3.40). The resulting equations may be solved in a
straightforward manner. The solution may be written
- Q)\ l'r =X2T "131 “'lOOT
‘12(“') = Ape + Ae + Aﬁe + Aje (3.42)
Aq7 AT 4 pe 3 -1007
q3(-r) a B.e + Be 3 + Bye (3.43)
“X47 AT ~131 =100t (3.04)

qh('r)-:Ce + C.e + C.e + Cpe
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where A = % {111»» M}
Ay = Lo
>‘3 = % [111 + JW}:L]
Ay = 0.15061 , A, - %Q s Ay = 345.2734, Ay =-366.0906
B, 5-2.52h2 » B, - -390 B - -567.9522, B, = 581.3876

C, = 1.1621 , ¢

1

2

=0 , c3 = 283.9761, Cy = -285.1382

This problem was also done by utilizing one less unknown function, i.e.,
by terminating the assumed series for O, equation (3.29), with the fourth
term. The details of this simpler solution are not given here but the
results for both solutions are compared to exact solution results in the
table and graph that follow. It is to be noted that both solutions give an
excellent representation of the temperature for long times. The representa-

tion for short times is ‘good’ for the higher order solution considering

the severe test represented by this example.

T = 0,01 ‘T = 0.1
two three two three
X (%) unknown unknown unknown unknown
___Exact Functions Functions Exact Functions Functions

0 632 632 632 _1.000 1.000 _1.000
125 +512 yann . 548 <91k +917 +913
+250 693 .707 671 .825 827 826
+375 859 + T8k 835 +730 o127 o131

+500 «919 834 <92k 621 615 622
625 +860 .820 873 Lol 189 1493
+750 670 .702 +669 346 346 +345
875 o364 2 349 .178 -184 180
1.000 | .000 .000 000 .000 .000 .000
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Comparison of Exact and Variational solutions
for a slab with parabolic initial temperature
distribution and time dependent surface
temperature.
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IV. A NATURAL CONVECTION PROBLEM

A. Variational Equations

Steady laminar natural convection from a vertical semi-infinite flat
plate is a problem which has been investigated extensively. There exist
approximate integral solutions(6) and exact theoretical results(7) with
which to compare a variational solution.

Introducing the standard boundary layer assumptions (8) into the

steady state Navier-Stokes, energy and continuity equations yield

S ew+$ (v = o (h1)
p{u?x+vgu§}=§§(ugl;- -%xg-pg | (k.2)
¢, 20 Z+v P, (3u>2+ e (4.3)
OpuE; V§§=-ay2 H% U ax 3
7
7
Tu 24 L\r 1

L\\&\\\\\ :
*»
s
l w
<

As has been shown by Ostrach(7)9 it is permissible to neglect the
dissipation and compression work terms in the energy equation if
|e(r - 1)
is small, as it almost always is. If, additionally, constant properties
are assumed, and the purely hydrostatic pressure variation for y is

introduced, the previous equations reduce to

2
sy 3“3-; = 82, pe (1-T) (b))
oy
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2

u%+v§%=a§—g (4.5)
Y

du ., ov

Sty - 0 (4.6)

The introduction of a stream function ¥, defined by

identically satisfies the continuity equation. Defining

X ul V. yg_ VL
g = L’ U= o 9 Pr = a ) V= a
i T-T g fa('J.'w-Tm)L3
V=g =g » Gr= 3
W o 14

and introducing a coordinate transformation fram (x,y) to streamline

coordinates (E,¥) the following relations are obtained.

gzy” %[%h"’?svl;] (4.7)
e = 15 ©(4.8)

The momentum and energy equations in this new coordinate system are

%%: U%(U%’)-&PrGrG . (4.9)
0 9 )
2508 (0

It is convenient to re-write the momentum equation as

1 U @ 9 )
s -rg-5 s (b.12)
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Equations (4.10) and (4.11) are of a form that allow the aprlication

of the variational procedure. A new variable, associated with the

variational procedure of Equation (4.10) is defined as

:
QE,¥) = §U§@

o]

The significence of Q is clearer in (x,y) coordinates. Utilizing the

relationship of Equation (4.8), Equation (4.12) may be re-written as

X
Q(X,Y) = S %gdx
o]

In this form it is apparent that Q 1is proportional to the heat flux

through some section y between zero and x. Associating ¢ = O with the

vall, i.ee, y = O, then Q(£,0) is proportional to the total heat flux

from the wall between zero and & =

[l

A new variable, associated with the variational procedure for
Equation (4.11) is defined as

3
mm)=gu%@

o
In (x,y) coordinates, H may be re-written as

X

H(x,y) = s gg-dx

o

In this form, H 1is seen to be proportional to the shear force at some
section y between zero and x. At the wall, i.e., ¥ = O, H(E,0) is

proportional to the total wall shear between zero and § = x/Le

(ko22)

(4.13)
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The definition of the two error functions

JOIN ,
E, = S ( [ggt -U g-‘% ay & (La1k)
Q0 O
E ri
M 2
E, = S S %‘- - U%ﬂ ay o | (4.15)
o 0 )

allows the writing of the variational equations for this coupled problem.
In Equations (k.14) and (L4.15) Yo represents a thermal 'penetration
thickness' in terms of the stream function, while wM represents &
hydrodynamic °‘penetration thickness'. Defining the pn(é) as the unknown
functions associated with E, (end Q) and the qn(g) as the unknown

functions associated with E, (and H), the variational equations are

wT

(%%;) (%9‘ -y %:% a = 0 (4.16)
o
Yy

For this problem it is assumed that the temperature profile can be
adequately represented by a single unknown function wT(g). Likewise
the velocity profile is assumed to be representable by a single unknown
function wM(E). Under these assumptions, Equations (4.16) and (L.17)

become
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S (53;) (g‘i U g- a = 0 (4.18)

by
S (sr ( va) % =0 (k.19)

(o]

From the definition of Q 1in Equation (k.12) and the energy equation

(Equation (4.10)) it follows that

g g
Bo) BO®e-) 2e

o (o]
% = © (4.20)

where the condition © =0 for £ = O has been employed. Integrating

yields

¥
Q = S o dy (k.21)
¥

in which the constant of integration has been evaluated (as zero) by

noting that, from the interpretation given to Q subsequent to

Equation (4.12), Q must be zero for ¥ = ¥pe Then
¥ ¥
a 59 d‘l’: e a .
5% = S g‘i’—- dy - Q' F o= WT g: ay = 33 *T (’4"22)
: T b=t ' y lT T
T T
since
2] = 0
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Thus, Equation (4.18), the variational equation for the thermal problem

mey be written specifically as

Yy
(i g g an .
o] T T

With velocity and temperature profiles, Equation (4.23) represents
one first order ordinary differential equation involving *T and *M'
From the definition of H in Equation (4.13) and the momentum

equation (Equation 4.11) it follows that

g : g g
%‘-:S %;(ng—')dgz%r—§ grgdg-RaS %dg (b.24)
[o] (o] (o]

vwhere the condition U=0 for & = O has been employed. Integrating

yields

Y v e
H = = S vdy - Rag (S %dg) ay (4.25)
¥ v

in which the constant of integration has been evaluated (as zero) by
noting that H must be zero for ¥ = *M » The lower limit of the second
integral has been set at WT because it is explicltly assumed that

mT < wM and therefore, since 6 = O for ¥ 2 *T 3 T &€ =0 *T“ ¥ < wM .

o
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From Equation (4.25)

¥
oH 1 U
® - & S Sy & - Y| by
Y b=ty
¥
g .
~Ra g %dw -[S %dg]q;,r
but, UI%*M:o
S%g :
L), s Tty
Therefore
st (Vo '
%‘EM g %dﬁ - Ra.g o ¥ (4.26)
0 Vo
and
) *5
5-;‘; - -i‘;r—g %de (4.27)
M

Equation (4.19), the variational equation for the fluid-dynemic

problem may be written specifically as

¥
! 1 "BU by wau WQ ou
[E;S md*] ?r_S a;d-dy-naj ﬁdw-u-é-*f ay = 0 (L.28)
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With velocity and temperature profiles, Equation (4.28) represents
another first order ordinary differential equation involving *T and
¥y In Equation (4.28) it should be noted that, consistent with what
has been said before, the term S v % dy does not exist if ¢ > *T'
Therefore the upper limit on the ther integral must be changed from *M
to *T when this term is met in the integration.

The usual heat transfer correlations may be obtained in the following

manner. The local Nusselt number

- X
hxx 65;)o -

Mu_ = = . - x
x K T, T) ¥

y=0

- -gug,e)*so
o
=-§§§-)_o=-§‘}gg oay (4.29)
- X

where the relations defined by Equations (4.8), (4.12) and (4.21) have
been employed.

The average Nusselt number

X
h _S 5;') o : 36
— _  BL o Yo j
N = — = = = U dg
L k T T A o
0
= -q(g,0) = S Ody (k.30)
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It is important to compute heat transfer quantities in the manner
above rather than from derivetives of the temperature profile.

In order to compare velocity end temperature profiles in the physical
plane it is necessary to determine y as a function of ¥. From the

definition of the stream function it follows that

¥
% _ S 4y (4.31)

B. Velocity and Temperature Profiles

For the coordinate system employed the condition that shearing stress
and conductive flux be non-zero and finite near the wall requires (see
Equation 4.8) that the velocity and temperature vary to the order of
wl/2 in the vicinity of the wall. For this reason the velocity profile
was assumed as & power series in terms of (*/QM)n/z, while the temperature
profile was assumed as & power series in terms of (ﬁ/wT)n/a.

The temperature profile was made to satisfy the following conditions

6 = 0 for ¥ = *T
© = 1 for § =0
g% = 0 for ¢ = *T

while the velocity profile satisfies

U O for $=0 and ¢ =

VY

lu gT (u g%]w:o Ra

o
i
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The last condition for the velocity profile is obtained by evaluating
Equation (4.9) at the wall (¥ = 0). This procedure is necessary because
the usual 'smoothness' condition at ¢ = *M is satisfied identically as
& result of Equation (4.8) and the zero value for U at ¢ = e
The velocity and temperature profiles are

1/2 2
e = [l - (%;) ]
o - (47 WOV -4

3 "y

Introducing these into Equations (4.23) and (4.28) yields

e ¢ N E N
and
$M1/5 EM - (Ra)l/5(Pr) F, (r) =0
vwhere / p
1 1/3
O N CRS
and

1/3 2
e - () OV [ (-2, )

5 3,3 5/@,3 2.3 3/_L4 16 1/
Tt T v pr Y BT 3735 F

(k.32)

(4.33)

(k34)

(4.35)

(4.36)

(4.37)
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Equation (4.34) may be rewritten as

A MR G i NS R

where tTl/5 & rh/5 ¢Ml/3 ¥

T M

has been utilized.
A comparison of Equations (4.35) and (4.38) yields

F (x)

Integration of Equation (4.38) yields
1
W@ = e {Fr @M

and from Equation (4.29), (4.30), (4.32) and (4.40) the heat transfer

results may be written as

\ 3/t
Nu ol (By(0)
(&)~ 2 (3) 2/

and

Nu. 4 4
(Er_L\l/“ ) é‘ﬁ/u /e [y [/
T")

Utilizing Equations (4.31), (4.33) and (4.30), the relationship

between y and ¢ may be written as

(4.38)

(4.k0)

(b.k1)

(4.k2)

(bol3)
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The assumption that L\rM; WT’ explicit in the previocus development,
results,from consideration of Equation (4.39), in a minimum Prandtl number
of 3.90 for this solution.

Calculations were made to compare this variational solution to
previous solutions. A graphical representation of the heat transfer results,
as well as the velocity and temperature profiles, for the several solutiohs
is given in the figures which follow.

An examination of these figures reveals that the heat transfer results
are poor except for high Prandtl numbers and that the velocity and temper-
ature representation is not significently better than that obtained from
an integral approximate solution. It is possible that the relatively poor
results obtained with this problem are more a measure of the unsuitaebleness

of the coordinate system employed than of the variational procedure.
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V. CONCLUSION

The present report clearly demonstrates that the variational solutions
obtained have the accuracy desirsble of approximate solutions. There exist
& large number of problems to which this variational technique is apperently
applicable. Work is now under way to test the technique for more com-
plicated problems, and results of this continuing investigation will be

the subject of future technical reportse.
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